Does Broker-Dealer Health Affect Stock Prices?

Daniel Barth ¹ Nicholas Zarra ²

¹Federal Reserve Board ²NYU Stern

Office of Financial Research January 8, 2025

This Paper

- 1. Aggregate broker-dealer (B/D) financial health explains returns across many asset classes (Adrian et al. [2014], He et al. [2017])
 - Puzzle: Even in classes with low B/D ownership (e.g., stocks)

- 2. In stock markets, B/Ds mainly participate by lending to hedge funds (HFs) via their prime brokers (PBs).
- 3. We test if, and under what conditions, B/D health shocks transmit to equity markets via lending to HFs.

The Credit Supply Transmission Mechanism

Our Setting and Approach

- Challenge: B/D health is endogenous to loan demand.
- Identify via large cross-sectional shocks from event studies.
 - 1. Losses from **Archegos** in Q2 2021
 - 2. Widespread European B/D distress in Q1 2016
- Provide additional evidence from the panel and GFC.
- Cross-sectional identi cation rests on imperfect substitution across B/Ds, which ex-ante isn't obvious:
 - 1. **B/D Concentration:** Top 10 B/Ds account for 80% of loans.
 - 2. **HF Diversi cation**: Large HFs borrow from about 3.6 B/Ds.

Our Main Results

1. B/D health # =) PB lending #.

- B/D health # =) HF equity holdings #, but only in broad distress.
 - Broad: direct B/D shock coincides with other B/Ds' health #.
 - Why? HFs cannot substitute between B/Ds.

- 3. When B/D shocks =) HF equity holdings, stock liquidity #, and stock prices # that subsequently revert.
 - The price impact multiplier is 3!

Related Literature and Contributions

- 1. Intermediary Asset Pricing:
 - 1.1 **Theory:** He and Krishnamurthy [2013], Brunnermeier and Sannikov [2014], Brunnermeier and Pedersen [2008]
 - 1.2 **Empirical**: Adrian et al. [2014], He et al. [2017], Ma [2023], Siriwardane [2019], Haddad and Muir [2021], Seegmiller [2024]

<u>Contribution</u>: We provide causal evidence for the credit supply transmission mechanism in equity markets.

- 2. Hedge Funds, Leverage, and Brokers:
 - 2.1 Aragon and Strahan [2012], Barth et al. [2022, 2021], Kruttli et al. [2022], Dahlqvist et al. [2021]

<u>Contribution 1</u>: We document the full transmission channel, which <u>Contribution 2</u>: ...depends on HFs' capacity to substitute across B/Ds <u>Contribution 3</u>: ...which, in turn, depends on the health of other B/Ds.

- 3. Inelastic Markets and Asset Prices
 - 3.1 Koijen and Yogo [2019], Koijen et al. [2023], Gabaix and Koijen [2021]

<u>Contribution</u>: We estimate the strong rote multiplier for a shock to arbitrage capital in a period of intermediary distress.

HF-PB Institutional Details

- In U.S. equity markets, HFs are the main levered investors
 - ... PBs are the main source of debt financing.
 - ... PB loans are collateralized.
- Broker-Dealer Industrial Organization
 - B/Ds affiliated with global systemically important banks (G-SIBs) provide 90% of HF loans.
 - The top 10 B/Ds account for 80% of HF lending.
- Hedge Fund Market Structure
 - HFs manage \$11 trillion in gross assets across 2,000 funds.
 - \$3 trillion in stocks
 - On average, equity hedge funds have a leverage ratio of 1.7.
 - Large HFs (> \$1B in gross assets) have 3.6 PBs on average

Three Aggregate Novel Facts

B/D Lending to HFs is Large

Much larger than Commercial & Industrial Loans by G-SIBs (\$1T)

Prime Brokerage Lending Tracks Aggregate B/D Health

Prime-Broker data from Enhanced Financial Accounts (Fed)

Prime broker lending growth and He et al. [2017] factor correlate 66%.

Stocks Held More by HFs # When Agg. B/D Health

Roadmap

Empirical Methodology and Data

Event Studies

Archegos European Broker-Distress

Importance of Broad Shocks

Additional Evidence

Identifying Transmission Channel

- Previous slides provide novel suggestive evidence that:
 - 1. B/D health #=) Loans #
 - Loans #
 - 2. B/D health #=) Stock Prices #
- But there are identification challenges, namely:
 - Some missing factor drives both B/D health and HF loan demand (e.g. Covid, GFC)

Identifying Transmission Channel

- Previous slides provide novel suggestive evidence that:
 - 1. B/D health #= Loans #
 - 2. B/D health #=) Stock Prices #
- But there are identification challenges, namely:
 - Some missing factor drives both B/D health and HF loan demand (e.g. Covid, GFC)
- Our approach: exploit plausibly exogeneous shocks to B/D health and multiple cross-sections
 - Cross-section of brokers:
 - Why? Allows us to assign treatment to certain brokers
 - 2 Cross-section of funds:
 - Why? Fund-level heterogeneity rule outs common HF shock
 - 3. Cross-section of stock holdings:
 - Why? Measure x-sectional price impact based on di erential exposure

Ideal Cross-Sectional Credit Supply Empirical Design

Let PBL denote PB loan quantities, b a broker, and f a fund:

1. Do broker shocks associate with lending quantities?

$$\Delta PBL^b = + 1fb = Distressedg + b$$

2. If so, is there evidence of a **credit supply channel**?

$$\Delta PBL^{f;b} = f + 1fb = Distressedg + f;b$$

3. Can funds substitute across brokers?

$$\Delta PBL^f = + \text{AnyDistressedBroker}^f + f$$

4. Does imperfect substitution trigger stock sell-offs?

$$\Delta \text{EquityHoldings}^f = + \text{AnyDistressedBroker}^f + f$$

Today's empirical methodology

Let PBL refer to PB loan quantities, b a broker, and f a fund:

1. Do broker shocks associate with lending quantities?:

$$\Delta PBL^b = + 1fb = Distressedg + b$$

2. If so, is there evidence of a credit supply channel?

$$\Delta PBL^{f;b} = f + 1fb = Distressedg + f;b$$

Can funds substitute across brokers?

$$\Delta PBL^f = + \text{AnyDistressedBroker}^f + f$$

4. Does imperfect substitution trigger stock sell-offs?

$$\Delta \text{EquityHoldings}^f = + \text{AnyDistressedBroker}^f + f$$

Today's Data

Roadmap

Empirical Methodology and Data

Event Studies

Archegos European Broker-Distress Importance of Broad Shocks

Additional Evidence

Two Event Studies

- We rely on two event studies to examine the conditions under which B/D health transmits to equity markets:
 - 1. Archegos in 2021
 - 2. European B/D Distress in Q1 2016
- These shocks are similar in terms of:
 - # of B/Ds shocked (6 vs. 5) and the concentration of PBs (33% vs. 25%)
 - Reported losses that initiate the shock (\$10.5B vs. \$11.5B)
- These shocks differ in the health of non-shocked B/Ds:
 - Archegos Idiosyncratic shock
 - \Idiosyncratic"- non-treated B/D health remains healthy.
 - European B/D | Broad shock
 - \Broad shocks" occur when direct B/D shocks coincide with a deterioration in the health of other B/Ds.
- We find evidence that the capacity to substitute varies b/w the two events, related to the health of non-shocked B/Ds.

Roadmap

Empirical Methodology and Data

Event Studies

Archegos

European Broker-Distress Importance of Broad Shocks

Additional Evidence

Archegos Default and Broker Losses

- In late March 2021, the large family office Archegos defaulted on its derivative positions with major broker-dealers.
- A disorderly liquidation process caused total losses exceeding \$10 billion.
- Breakdown of broker losses:
 - Brokers with losses (% of net worth): Credit Suisse (17.6%), Nomura (16.4%), UBS (1.4%), Morgan Stanley (0.7%), MUFG (0.2%), Mizuho (0.28%)
 - Brokers with no losses: Goldman Sachs, Deutsche Bank, Wells Fargo.
- Exposure Group: B/Ds with realized losses ("Archegos" or "Arch")

Brokers with Archegos Losses # Lending, Other B/D "

HF managers are able to substitute away from distress

To test fund substitution capacity, we regress:

$$\Delta \ln(\mathsf{EqHoldings}_{2021q2}^m) = + \mathsf{BorrowedFromAnyArch}_{2021q1}^m + \frac{m}{2021q2}$$

	$\Delta(\ln EqHoldings^m_{2016\sigma 1})$					
	(1)	(2)	(3)	(4)	(5)	(6)
BorrowedFromAnyArchegos	0.009	0.022	0.028	-0.013	-0.014	-0.001
	(0.022)	(0.021)	(0.023)	(0.018)	(0.018)	(0.021)
Intercept	0.133***	0.111***	0.111***	-0.021***	-0.031***	-0.024**
	(0.009)	(0.010)	(0.012)	(0.007)	(0.009)	(0.011)
R-squared	0.001	0.004	0.007	0.001	0.002	0.000
N	562	320	222	562	320	222
Size	All	At Least 500M	At Least 1B	All	At Least 500M	At Least 1B
Port	Market	Market	Market	Stale	Stale	Stale

Standard errors in parentheses.

Robust standard errors.

 $\mid \begin{array}{l} \text{``} p < 0.10, \text{'`} p < 0.05, \text{'`} \mid p < 0.005, \text{''} \mid p < 0.001 \\ \text{StalePricePort}_t^m = \\ \end{array} \mid \begin{array}{l} \mathsf{P}_s \text{Price}_{2021q1}^s \quad \text{SharesHeld}_t^{m/s} \\ \end{array}$

Consistent with perfect substitution across broker-dealers!

Roadmap

Empirical Methodology and Data

Event Studies

Archegos

European Broker-Distress

Importance of Broad Shocks

Additional Evidence

Financial Press in 2016 Q1

Charges to push Deutsche Bank to €6.7bn loss

Cryan calls result 'sobering' after multibillion-euro litigation and restructuring costs

THE WALL STREET JOURNAL

Credit Suisse swings to massive loss after write down

FT Trading Room Deutsche Bank AG + Add to myFT

Investors flock to CDS amid fear over banks'

bonds

High trading volumes come as poor earnings at Deutsche add to concerns

European banks: left behind

The market increasingly belongs to better-capitalised US banks that were restructured years ago

Are Deutsche Bank's tanking shares the start of the next financial crisis?

Shares in Germany's biggest bank have plummeted to 30-year lows this week

European Broker-Distress in Q1 2016

- Near Default of **Deutsche Bank** (DB) shook markets
 - 2015 Q4: €6 billion write-downs in non-US retail banking. (15% of net worth)
 - Jan 28, 2016: Uncertainty emerged if DB could repay subordinated debt (CoCos) at DB Media Day
- Other European B/Ds suffered losses, namely **Credit Suisse**
 - CS-Feb 4, 2016: Good-will impairment (9% of net worth)
- Investors became worried about Euro B/Ds in general: \The worries about these bonds represent real fears that the European banking system may be weaker and more vulnerable...than a lot of people originally thought"{A major HF manager (02/08/16)

We call the most distressed Euro brokers the "Euro 5" (E5)

- Top quintile of B/Ds of CDS spread changes on announcement dates:
- Today: Test impact of E5 on fund equity holdings as no public loan data

► E5: Ex-ante characteristics and ex-post outcomes ► E5 Announcements

E5 HF Managers Sold Off Equities in Response to Shock

For each hedge fund (HF) manager m:

$$\Delta \ln \left(\mathsf{EqHoldings}_{2016q1}^m \right) = \quad + \quad \ \mathsf{BorrowedFromAnyE5}^m + \ ^m_{2016q1}$$

	$\Delta \ln (EqHoldings_{2016g1}^m)$					
	(1)	(2)	(3)	(4)	(5)	(6)
BorrowedFromAnyE5 ^m	-0.047*	-0.053*	-0.074**	-0.057**	-0.063**	-0.081***
	(0.025)	(0.028)	(0.029)	(0.025)	(0.028)	(0.028)
Intercept	-0.061***	-0.070***	-0.065***	-0.019*	-0.031**	-0.028*
	(0.011)	(0.014)	(0.016)	(0.011)	(0.014)	(0.015)
R-squared	0.008	0.015	0.037	0.012	0.022	0.047
N	454	232	170	454	232	170
Size	All	At Least 500M	At Least 1B	All	At Least 500M	At Least 1B
Port	Market	Market	Market	Stale	Stale	Stale

Robust standard errors.

$$\mid \begin{array}{l} ^{\star} p < 0.10, \stackrel{\star\star}{} p < 0.05, \stackrel{\star\star\star}{} p < 0.01 \\ \mid & \text{StalePricePort}_t^m = \\ \end{array} \mid \begin{array}{l} \mathsf{P} \\ s \text{ Price}_{2015q4}^s \end{array} \quad \text{SharesHeld}_t^{m/s}$$

This provides evidence towards imperfect substitution across broker-dealers!

▶ Borrowing from DB and Other E5 Predicts Highest Sell-off

Decomposing Market vs Stale Portfolios X Less distressed US brokers increase lending more

From Hedge Fund Exposure to Stock Exposure

- Let's document stock-level effects.
- Construct a stock-level ex-ante exposure metric:

$$\mathsf{E5Shr}_{2015q4}^{\mathcal{S}} = \underset{m \ge M_{15q4}(\mathcal{S})}{\times} \mathsf{MktShare}_{2015q4}^{\mathcal{S};m} \; \mathsf{BorrowFromAnyE5}^{m}$$

where MktShare
$$_{2015q4}^{s;m} = \frac{\text{SharesHeld}_{2015q4}^{s;m}}{\text{SharesOutstanding}_{2015g4}^{s}}$$

Validate that "exposure implies "stock-level sell-offs:

$$\Delta \mathsf{E5Shr}^{s}_{2016q1} = \quad + \quad \ \mathsf{E5Shr}^{s}_{2015q4} + \ ^{s}$$

Establish the impact on stock prices:

$$ret_{2016q1}^{s} = + E5Shr_{2015q4}^{s} + {}^{s}$$

where ${\rm ret}_{2016q1}^{\rm S}$ denotes either raw or residualized stock returns.

Stocks more exposed to the shock have abnormal turnover

We test for abnormal sell-offs by:

$$\Delta E5Shr_t^s = t + {}_1E5Shr_{t-1}^s + {}_2E5Shr_{t-1}^s$$
 Q12016 + ${}_t^s$

		Δ % Held Euro5 HFs				
		(1)	(2)	(3)	(4)	(5)
E5Shr _{t 1}		-0.094***	-0.045***	-0.050***	-0.049***	-0.056***
		(0.009)	(0.003)	(0.004)	(0.004)	(0.004)
$E5Shr_{t-1}$	Q12016		-0.049***	-0.044***	-0.050***	-0.044***
			(0.009)	(0.009)	(0.009)	(0.009)
Intercept		-0.0025***	-0.0006***			
		(0.0004)	(0.0001)			
N		1835	21972	21972	21969	21969
Q12016		X				
Quarter FE				X		X
IndustryFE					Χ	Χ

Stocks more exposed to shock have lower realized returns

For each stock S, we estimate:

$$ret_{2016q1}^s = + E5Shr_{2015q4}^s + {}^s$$

	(1)	Rets _{s;q} (2)	(3)	CAPM;s;q	FF4;s;q (5)	s BAB (6)
E5Shr _{2015q4}	-0.507***	-0.409***	-0.315***	-0.310***	-0.347***	-0.302***
,	(0.129)	(0.104)	(0.0935)	(0.0952)	(0.0876)	(0.0942)
$nonE5Shr_{2015q4}^{s}$		-0.237	-0.0647	-0.0803	-0.113	-0.0512
		(0.144)	(0.0842)	(0.0848)	(0.0721)	(0.0835)
Intercept	0.0351***	0.0433***	0.0284***	0.0233***	0.0366***	0.0392***
	(0.0119)	(0.00999)	(0.00608)	(0.00616)	(0.00530)	(0.00610)
R^2	0.018	0.024	0.283	0.288	0.239	0.278
Industry FE			X	×	X	X
N	1835	1835	1803	1802	1800	1803

1 " in B/D exposure =) 1:5PP return in quarter

Robust to:

► Other institutional types

→ Stock-Level E5 Controls

Effect reverses in four months

$$cumret_{2015m12+}^{s} = + Euro5MktShare_{2015q4}^{s} + {s \atop 2015m12+}$$

Identical results for residualized returns. Residualized Return Reversion

Sizing the Impact

Compute price multiplier:

$$M = \frac{\frac{P}{P}}{\frac{Q}{Q}}$$

- Back-of-envelope: 3.35 (sell-o) or 7.14 (ab. sell-o)
- OLS Sell-O Estimate: 2.97 for sell-o s, 0 for purchases
- Is this big?
 - Gabaix and Koijen [2021] (Micro): Estimates from 0.7 to 2.5
- This is the rst estimate of a direct shock to arbitrageur capital where:
 - Liquidity deteriorates
 - Uncertainty increases Uncertainty Quote
 - and ...

Back-of-the-Envelope Calculations

Non-levered and more inelastic investors absorb sell-o

We compute for each other investor class

$$MktShare = X \\ MktShare ^{s,m} ManagerClas ^{s}$$

We then estimate:

MktShare
$$_{2016q1}^{s;i}$$
 = + Euro5SellO $_{2016q1}^{s}$ + $_{2016q1}^{s;i}$

	(1)	(2)	(3)	(4)
	% Held nonE5 HFs	% Brokers	% Households	% Inv Adv
% Sold-O E5 HFs	0.106**	-0.0137	0.609***	0.320***
	(0.0469)	(0.0164)	(0.107)	(0.0900)
R-squared	0.009	0.002	0.079	0.022
N	934	933	934	934

In line with theories where asset holders matter for risk premia!

Roadmap

Empirical Methodology and Data

Event Studies

Archegos
European Broker-Distress
Importance of Broad Shocks

Additional Evidence

Shocks di er on the health of non-directly shocked B/Ds

This paper:

- 1. Archegos (Large, idiosyncratic shock)
- 2. European Broker Distress (Large, broad shock)

Archegos

European Broker Distress

Less distressed American B/Ds expanded credit in 2016

- Consistent with substitution to less distressed broker Regression Results
- I Suggest time-varying substitution frictions vis-a-vis Archegos

Roadmap

Empirical Methodology and Data

Event Studies

Archegos European Broker-Distress Importance of Broad Shocks

Additional Evidence

Broad Distress and Transmission

- Panel Data: Most shocks are idiosyncratives
 - Construct general distress shocks measures from CDS spreads
 - All shocks other than 2016 Q1 are idiosyncratic
 - High distress \(\diamond{\pmatrix}\) broker lending#, no HF equity holding transmission.
- Lehman Brothers: Similarly broad to to 2016 Q1
 - Broad distress from funding market contagio ▶ Results
 - HFs with higher exposure to distressed broker\$ =equity holdings#, equity prices#.

 Results
- Conclusion: Non-shocked B/D health crucial for equity market transmission!

➤ Covid and CS X-Section

Conclusions

Conclusion

- B/D health shocks do transmit to equity markets
 - ...but only when hedge fund managers cannot substitute away
 - ...which is determined by the health of non-shocked B/Ds

- In normal times, hedge funds are well-diversi ed against these shocks due to their private actions.
 - In such cases, broker-dealer credit supply is not a nancial stability concern.

In periods of broad distress, B/D shocks a ect equity prices with a price multiplier of at least 3.

My agenda

- Intermediaries and Investors:
 - Private Liquidity Backstops: Bank Credit Lines and Loan Mutual Funds (w/Schrimpf, Todorov and Wang)
 - Intermediary Risk and Hedge Fund Crowding: A Narrative Approach (solo)
 - Bank Holding Company Internal Capital Markets (w/ Friedrichs, Mann, and Schrimpf)

Published:

- Partisanship and Fiscal Policy in Economic Unions: Evidence from US State (Carlino et al. 2023|AER)
- Policy Publications:
 - 1. Hedge Fund Exposure to the Carry Trade (Packer et al. [2024])

Thank you!

References I

- T. Adrian, E. Etula, and T. Muir. Financial intermediaries and the cross-section of asset return The Journal of Finance 69(6): 2557{2596, 2014. doi:10.1111/jo .12189. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.12189
- G. O. Aragon and P. E. Strahan. Hedge funds as liquidity providers: Evidence from the lehman bankruptdournal of Financial Economics103(3):570{587, 2012. ISSN 0304-405X. doi: https://doi.org/10.1016/j.j neco.2011.10.004. URL https://www.sciencedirect.com/science/article/pii/S0304405X11002364
- D. Barth, J. Joenvaara, M. Kauppila, and R. Wermers. The hedge fund industry is bigger (and has performed better) than you think. SSRN 2021.
- D. Barth, L. Hammon, and P. Monin. Leverage and risk in hedge funds. SSRN 2022.

References II

- M. K. Brunnermeier and L. H. Pedersen. Market liquidity and funding liquidity. The Review of Financial Studie \$2(6): 2201{2238, 11 2008. ISSN 0893-9454. doi: 10.1093/rfs/hhn098. URL https://doi.org/10.1093/rfs/hhn098
- M. K. Brunnermeier and Y. Sannikov. A macroeconomic model with a nancial sector. American Economic Review 04(2): 379{421, February 2014. doi:10.1257/aer.104.2.379URL https:
 - //www.aeaweb.org/articles?id=10.1257/aer.104.2.379
- M. Dahlqvist, V. Sokolovski, and E. Sverdrup. Hedge funds and nancial intermediaries. Working Paper 2021.
- X. Gabaix and R. S. J. Koijen. In search of the origins of nancial uctuations: The inelastic markets hypothesis. Working Paper 28967, National Bureau of Economic Research, June 2021. URL http://www.nber.org/papers/w28967.

References III

- K. Gleason, S. Bright, F. Martinez, and C. Taylor. Europe's cocos provide a lesson on uncertaint PR Working Paper 2017.
- V. Haddad and T. Muir. Do intermediaries matter for aggregate asset prices? The Journal of Finance 76(6):2719 (2761, 2021. doi: 10.1111/jo.13086. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.13086
- Z. He and A. Krishnamurthy. Intermediary asset pricingmerican Economic Review103(2):732{70, April 2013. doi: 10.1257/aer.103.2.732URL https: //www.aeaweb.org/articles?id=10.1257/aer.103.2.732
- Z. He, B. Kelly, and A. Manela. Intermediary asset pricing: New evidence from many asset classesurnal of Financial Economics 126(1):1{35, 2017. doi: 10.1016/j.j neco.2017.08.002 URL
 - https://www.sciencedirect.com/science/article/pii/S0304405X1730212X

References IV

- R. Koijen, R. Richmond, and M. Yogo. Which investors matter for equity valuations and expected returns eview of Economic Studies 2023.
- R. S. J. Koijen and M. Yogo. A demand system approach to asset pricing. Journal of Political Economy127(4):1475{1515, 2019. doi: 10.1086/701683 URL https://doi.org/10.1086/701683
- M. S. Kruttli, P. J. Monin, and S. W. Watugala. The life of the counterparty: Shock propagation in hedge fund-prime broker credit networks. Journal of Financial Economic 2022. ISSN 0304-405X. doi:https://doi.org/10.1016/j.j neco.2022.02.002. URL https://www.sciencedirect.com/science/article/ pii/S0304405X2200054X.
- S. Ma. Heterogeneous intermediaries and asset prices: A semiparametric approach? 2023.

References V

- M. Mitchell and T. Pulvino. Arbitrage crashes and the speed of capital. Journal of Financial Economics 04(3):469(490, 2012. ISSN 0304-405X. doi: https://doi.org/10.1016/j.j neco.2011.09.002. URL https://www.sciencedirect.com/science/article/pii/S0304405X11001991Market Institutions, Financial Market Risks and Financial Crisis.
- F. Packer, A. Schrimpf, V. Sushko, and N. Zarra. Hedge fund exposure to the carry tradeBIS Quarterly Review2024.
- B. Seegmiller. Intermediation frictions in equity market§SRN 2024.
- E. N. Siriwardane. Limited investment capital and credit spreads. The Journal of Finance74(5):2303{2347, 2019. doi: https://doi.org/10.1111/jo .12777 . URL https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.12777 .

Indirect participation is much larger than direct participation (all types)

Stocks More Exposed to H#sWhen Agg. B/D Health#

Stocks More Exposed to H#sWhen Agg. B/D Health#

HFs borrow from multiple but not all B/Ds

	Numb	er of F						
	mean	p50	p10	p25	p75	p9	Obs	Total Gross Assets\$(B)
HFs with at least 5B gross asset	s 5.1	4	1	2	8	10	105	1945
HFs with at least 1B gross asset	s 3.6	3	1	1	5	8	375	2505
All HFs	2.6	2	1	1	3	6	987	2790

▶ Return

Stocks More Exposed to H#sWhen Agg. B/D Health#

Lending Concentration: PB vs C&I

	(1)	(2)
	Hedge Fund Credit Concentration	Y-9C Total Loan Concentratio
1	14	12.3
2	27.9	22.3
3	40.3	30.7
4	48.2	36.9
5	55.7	40.3
6	63.1	43.2
7	69.8	46.1
8	75.4	48.9
9	77.8	51.3
_10	80.2	53.7

→ Return

Stocks are heterogeneously exposed to HFs

										_
	mean	p50	p1	p5	p10	p25	p75	p90	p95	p99
HF Institutional Share	15.3	10.3	1.1	1.8	2.6	4.7	20.5	35.2	46.1	68.3
HF Market Share	10.9	7.3	0.3	1.1	1.7	3.4	14.4	25.7	33.8	53.0
HF Institutional Turnover Share	27.4	25.4	0.1	1.9	4.8	12.5	39.4	52.6	60.9	81.2
Number of Hedge Funds	41.4	36	2	8	13	23	55	74	90	124
Observations	2180									_

Stocks are heterogeneously exposed to E5 and non E5 brokers

	mean	p50	p1	р5	p10	p25	p75	p90	p95	p99
E5 Market Share	5.4	3.8	0.1	0.4	0.8	1.9	7.5	12.5	17.2	20.5
Non-E5 Market Share	7.1	5.0	0.2	0.6	1.1	2.3	9.7	16.7	22.0	27.9
Observations	2166									

Correlation b/w E5 and non-E5: about 30%

Brokers with Archegos loss#sending

In the broker, we test the following:

$$ln(PBL_{2021q1!\ 2021q2}^{b}) = + ArchegosBroke^{h} +$$

	$ln(PBL_t^b)$								
	(1)	(2)	(3)	(4)	(5)	(6)			
A5Broker	-0.293***	-0.177**	-0.299***	-0.290**	-0.111*	-0.311**			
	-3.628	-2.507	-3.518	-2.477	-1.871	-2.269			
Archegos Exposed/No Losse		-0.028		-0.050					
			-0.297	-0.363					
r2	0.422	0.270	0.425	0.434	0.333	0.445			
N	20	19	20	10	9	10			
Sample	All PB	All PB ex CS	All PB	Lg PB	Lg PB ex CS	Lg PB			

▶ Return

Results robust to other institutional investor controls

	Ret _{s;t}	"FF4;s;t	Ret _{s;t}	"FF4;s;t	Ret _{s;t}	"FF4;s;t
% Held Euro5 HFs	-0.519***	-0.461***	-0.503***	-0.518***	-0.554***	-0.550***
	(0.129)	(0.103)	(0.126)	(0.102)	(0.120)	(0.0976)
% Held Brokers	-0.0137	-0.798				
	(0.583)	(0.531)				
% Held non-HF IA			0.0671***	0.0442**		
			(0.0250)	(0.0220)		
% Held non E5 Inst.					0.0546***	0.0342*
					(0.0184)	(0.0202)
Intercept	0.0364***	0.0451***	-0.00239	0.0149	-0.00955	0.0117
	(0.0115)	(0.00833)	(0.0185)	(0.0145)	(0.0126)	(0.0131)
R-squared	0.019	0.028	0.024	0.028	0.024	0.028
N	1823	1820	1835	1832	1835	1832

Standard errors are clustered at the three-digit SIC industry code level.

Results are robust to direct Euro 5 bank exposure cont

			R	et _{s;q}		
	(1)	(3)	(5)	(7)	(9)	(11)
% Held Euro5 HFs	-0.485*** (0.120)	-0.507*** (0.120)	-0.500*** (0.125)	-0.510*** (0.129)	-0.508*** (0.128)	-0.507*** (0.129)
% Held E5 B/D	-1.147 (1.169)	, ,	, ,	, ,	,	, ,
% Held E5 A liate	(,	-0.183 (1.022)				
E5 Bank in Syndicate		,	0.0356** (0.0144)			
SyndicatedLoansE5/FirmAssets			, ,	8.954 (7.006)		
E5 Bank Lead				, ,	-0.0196 (0.0315)	
SyndicatedLoansLeadE5/FirmAsset	S				, ,	-46.72 (101.1)

Standard errors in parentheses

▶ Return

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Stocks more sold-o by E5 mgrs have lower returns

	(1)	(2)	ts _{s;q} (3)	(4)	CAPM;s;q (6)	FF4;s;q (8)	BABRet _i s (10)
MktShareE5HFs	1.442***	2.852***	1.149**	2.970***	2.894***	3.104***	2.866***
	(0.517)	(0.786)	(0.470)	(0.741)	(0.772)	(0.757)	(0.729)
MktSharenon BHFs			-0.323	-0.553	-0.630	-0.437	-0.553
			(0.366)	(0.492)	(0.494)	(0.406)	(0.492)
Intercept	0.0142	0.0321**	0.0128***	0.0320***	0.0254***	0.0321***	0.0444***
	(0.0171)	(0.0128)	(0.00102)	(0.00622)	(0.00648)	(0.00636)	(0.00612)
R-squared	0.008	0.026	0.304	0.328	0.333	0.303	0.325
N	1659	902	1621	846	845	844	846
sello		Х		X	Χ	X	X

▶ Return

What's the impact of a one higher E5 exposure?

		Data		Estin	nates	
Measure	Mean	SD	IQR		1 SD	IQR Impact
Ex-Ante Exposure	5.2%	4.8%	5.59	%-0.315	1.5%	1.7%
Realized Sell-O	0	1.1%	0.8%	1.149	1.4%	1.0%

1. Is this reasonable?

- This is a realized very bad outcome
- GFC: 10{15% time-series discount in September 2008 on HF arbitrage assets (Mitchell and Pulvino [2012])
- Back of envelope Amihud Illiquidity estimates ranges from [:2;3]
- Later on: estimates from Lehman collapse is -4.8% (quarterly)

Reversions

(a) Raw Realized Returns (b) Betting-Against-Beta Residuals

(c) CAPM Residuals

(d) Fama-French 4 Res.

Amihud Illiquidity results are consistent with HF managi liquidity

De ne AL = log(1 + AmihudIlliquidity)

			E5		AL	re	et ^s
		(1)	(2)	(3)	(4)	(5)	(6)
E5Shr _{2015q4}		-0.111***	-0.127***	0.283**	0.081	-0.514***	-0.508***
		(0.009)	(0.010)	(0.126)	(0.106)	(0.139)	(0.129)
AL _{2015q4}			-0.001***		0.000		-0.009
			(0.000)		(0.017)		(0.006)
E5Shr _{2015q4}	AL _{2015q4}		0.051***		0.838**		-0.195
			(0.017)		(0.374)		(0.133)
R-squared		0.107	0.118	0.004	0.025	0.019	0.025
N		1751	1751	1751	1751	1751	1751

Standard errors in parentheses

^{*} p < 0:10, ** p < 0:05, *** p < 0:01

Is the panel evidence consistent with the event studies

Construct from CDS spreads a panel measure of broker distress:

Distres
$$\$^b = CDS^b_{;max} CDS^b_{1;eoq}$$

AbnormalDistres $\$ = Distres\$^b \overline{Distres}\$$

Construct discrete treatment as:

where is a percentile cut-o

Test impact on broker-level lending and hedge fund equity holdings.

B/D-Panel: Higher distress associates with lower lending

For = 95%, we regression:

$$ln(PBL_t^b) = t + b + H_t^b + b$$

where H_t^b = 2 f Abnormal Distres ; BigShock g

		In(F	PBL _t b)	
	(1)	(2)	(3)	(4)
AbnormalDistres	-0.182***	-0.157***		
	(0.0524)	(0.0495)		
BigShock ^b			-0.172***	-0.155***
			(0.0549)	(0.0444)
Intercept	0.0327***	0.0296***	0.0137**	0.0134***
	(0.00831)	(0.00501)	(0.00487)	(0.000541)
R-squared	0.163	0.233	0.148	0.224
N	669	669	669	669
FE	Q	Q and B	Q	Q and B

Standard errors in parentheses

^{*} p < 0:10, ** p < 0:05, *** p < 0:01

Limited evidence obroad distress outside Euro 5

Covid-19: Limited Evidence & ross-Sectiona Credit Shock

B/D health doesn't transmit to HF equity portfolios outside Q1 2016

CDS markets suggest \broad" distress after Lehman collapses

The funding run on MS's prime brokerage business

MS (and GS) funded itself via \free credits"{the balances that HFs have in their brokerge accounts.

Sell-o s Sparked by Lehman + Other Broker-Dealers

- Construct partial HF to B/D x-walk using Lipper TASS.
- Evidence of abnormal sell-o s fdrehman (LEH), Merrill Lynch (ML), and Morgan Stanley (MS):
 - Hedge fund manager sell-o s observed in the cross-section.
 - Stock-level turnover for a consolidated group of LEH, MER, and MS. Stock-Level
- Findings:
 - Contagion likely impacted Morgan Stanley's credit supply
 - Group all MS,MER, and LEH together as Lehman 3 (LEH3)
 - Group all MS+MER+LEH together

Stocks more exposed to LEH3 exhibit lower returns, evafter accounting for LEH exposure

	(1) ret _{s;t}	(2) "FF4;s;t	(3) ret _{s;t}	(4) "FF4;s;t	(5) ret _{s;t}	(6) "FF4;s;t	(7) ret _{s;t}	(8) "FF4;s;t
LEH (t-1)	-0.833* (0.436)	-0.779 (0.501)			-0.650 (0.432)	-0.585 (0.500)		
LEH3 (t-1)			-0.503*** (0.185)	-0.496** (0.221)			-0.484** (0.187)	-0.477** (0.223)
MS+MER (t-1)					-0.683*** (0.245)	-0.724** (0.287)		
non LEH3 HF (t-1)							-0.193** (0.0795)	-0.181** (0.0878)
R-squared N	0.002 1889	0.001 1889	0.007 1889	0.005 1889	0.009 1885	0.00 1885		

Standard errors in parentheses

1 " in B/D exposure =) 09/15-09/20

4:8PP return in quarter (0:8p.p from

► Conclusion

^{*} p < 0:10, ** p < 0:05, *** p < 0:01

2016Q1: Aggregate Equity Sell-O

De ate each series by value-weighted hedge fund return

2016Q1: Aggregate Equity Sell-O (Market Value)

B/Ds with higher CDS spread had# lending growth

For American brokers that led Y-9C,

$$ln(Loan_{2016q1}^b) = + Distres_{2016q1}^b +$$

where Distress over E5 annc.

	In(Loans ^b)		Loanş⁰ < 0	
	(1)	(2)	(3)	(4)
CDS Chg.	-0.257*		0.901	
	-1.702		1.289	
Above Median CDS Chg.		-0.129**		0.429**
		-2.124		2.108
r2	0.106	0.285	0.107	0.257
N	13	13	13	13

Consistent with substitution to non-distressed brokers Return

Market vs Stale Price Portfolio Decomposition

Decompose di erence b/w portfolios by:

MktChange StaleChange =
$$P$$
 $\{Z_1^{2015q}\}$ + P $\{Z_2^{Q}\}$

	MktChange (1)	StaleChange (2)	1 (3)	(4)
Euro 5 Manager	-0.063**	-0.070**	0.000	0.008
	(0.028)	(0.028)	(0.011)	(0.006)
Intercept	-0.056***	-0.028*	-0.026***	-0.003
	(0.014)	(0.015)	(0.005)	(0.003)
R-squared	0.030	0.036	0.000	0.010
N	170	170	170	170

Standard errors in parentheses

Di erence is driven by sell-o term 2!

^{*} p < 0:10, ** p < 0:05, *** p < 0:01

DB and 1 other E5 relationship predict greatest sell-or

	In (EqHoldings m 2016a1)		
	(1)	(2)	(3)
Non DB Euro 5 Relationship	-0.049*	-0.017	0.000
	(0.025)	(0.029)	(0.032)
only DB Relationship	-0.062*	-0.081*	-0.032
	(0.037)	(0.044)	(0.045)
DB+ at least one other Euro 5 Relationship	-0.073**	-0.063*	-0.116***
	(0.033)	(0.036)	(0.037)
Intercept	-0.008	-0.026	-0.028
	(0.012)	(0.017)	(0.019)
R-squared	0.020	0.024	0.064
N	445	225	163
Size	All	At Least 500m	At Least 1B
Port	Stale	Stale	Stale

Robust standard errors.

I Evidence towards credit contraction by E5 brok€ Return

^{*} p < 0:10, ** p < 0:05, *** p < 0:01

Aggregate Equity Holdings by Archegos Exposure

(a) Market Value

(b) De ated Value

→ Return

De ated value:= remove value-weighted return

2016Q1: Aggregate Equity Sell-O

De ate each series by value-weighted hedge fund return

Bloomberg Uncertainty Quote

"In a normal market this would be a great time to buy, but everyone is afraid to step in...Everyone is looking for the door at the same time." Trader Return

These spill-over brokers were ex-ante less pro table and showed higher reliance on lower tier capital

Ex-ante less-pro table as:

$$\frac{\text{MarketCap}_{2015q3}}{\text{BookEquity}_{2015q3}} = + \frac{1}{|\{z\}|} \text{Spillover+}$$
 (1)

3%

Ex-ante more reliant on lower tier capital by:

$$\frac{\text{AT 1}_{2015q3} + \text{Tier2Capita}_{2015q3}}{\text{TotalCapita}_{2015q3}} = + \frac{1}{|\{z\}|} \text{Spillover+}$$
(2)

$$\text{AT 1}_{2015q3} + \text{Tier2Capita}_{2015q3} = + \frac{1}{|\{z\}|} \text{Spillover+}$$
(3)

Moreover, two of three spillover brokers (BCS, RBS/NWG) announced billion dollar write-downs later in the quarte Return

Announcements

Table: News Events Concerning European Broker Distress: Here, we take the news events first discussed by Gleason et al. [2017] to understand how news about the health of two large European BHCs is released.

Institution	Date	Event Description
DB	28-Jan-16	DB annual media conference clarifying losses and implying possible non-payment of AT1 debt
CS	4-Feb-16	CS announces unexpectedly large losses, driven by impairment of legacy acquisition worth 4bn or 9% of net worth
DB	8-Feb-16	DB releases press lease outlining cash available for CoCo bond repayments in attempt to calm market
DB	23-Feb-16	DB releases press lease describing Euro-denominated bond repurchase

→ Return

Limited cross-sectional variation during pandemic

	$\Delta ln(PBL_t^b)$			
	(1)	(2)	(3)	(4)
AbnormalDistress ^b	-0.124*		0.0203	
·	(0.0662)		(0.0562)	
BigShock ^b		-0.181**		-0.0354
		(0.0759)		(0.0841)
R-squared	0.197	0.256	0.005	0.011
N	19	19	9	9
brokers	All ADV	All ADV	Top 50%	Top 50%
* p < 0:10, ** p < 0:05	5, ***, p < 0	:01	robust sta	ndard errors

Primary Dealer Credit Facility provided liquidity to distressed broker-dealer sector (03/17/20)

B/Ds with lower CDS spread Δ had "lending growth

For American brokers that filed Y-9C,

$$\Delta \textit{In}(\textit{Loans}^\textit{b}_{2016q1}) = \hspace{0.3cm} + \hspace{0.3cm} \textit{Distress}^\textit{b}_{2016q1} + \hspace{0.3cm}$$

where $Distress_{2016a1}$ is constructed from CDS Δ over E5 annc.

	$\Delta ln(Loans_t^b)$		$\Delta Loans_t^b > 0$	
	(1)	(2)	(3)	(4)
CDS Chg.	-0.257*		0.901	
	-1.702		1.289	
Below Median CDS Chg.		0.129**		0.429**
		2.124		2.108
r2	0.106	0.285	0.107	0.257
N	13	13	13	13

Consistent with substitution to non-distressed brokers! • Return

Suggest time-varying substitution friction vis-a-vis Archegos

Back-of-the-Envelope Calculations

Earlier, we estimated the following regressions:

Using these estimates, we compute the multiplier as:

$$M = \frac{\frac{\Delta P}{P}}{\frac{\Delta Q}{Q}} = \frac{2}{1}$$

Our results suggest:

$$M = 3.35 = \frac{0.315}{0.094}$$
 for all sell-offs.

$$M = 7.14 = \frac{0.315}{0.044}$$
 for abnormal sell-offs.

